Основы проектирования локально-вычислительной сети. Курсовая работа: Проектирование локальной вычислительной сети Создание локальной Проектирования локальных компьютерных сетей

ООО «Юникс» предлагает клиентам услуги по проектированию ЛВС любого уровня сложности. Создать локально вычислительную сеть необходимо, когда организации нужен общий канал передачи данных, к которому будет подключено различное офисное оборудование. Разработка таких проектов для небольших офисов не вызывает сложностей, но проектирование ЛВС предприятия – масштабная инженерная задача, требующая комплексных решений. Специалисты должны создать крупную надежную систему, с интеграцией большого количества компьютеров и другой аппаратуры, программным обеспечением с целью обеспечить грамотный монтаж ЛВС .

Первый этап в проектировании ЛВС сетей – подготовка технического задания. В данном документе содержатся все пожелания Клиента, касающиеся количества рабочих мест, распределительных пунктов, их размещения. Также учитываются особенности самой системы – например, ее категория. Основа чаще всего является комплексной – доступ к компьютерным и телефонным сетям нужен всем сотрудникам. Отсутствие технического задания сделает невозможным разработку проекта, а правильно составленное ТЗ позволит получить качественный проект по монтажу компьютерных сетей .

Специалисты нашей компании предоставляют Клиенту необходимые консультации для правильного формирования требований по техническому заданию. Если офис небольшой, от Клиента будет достаточно плана помещения, с указанием желаемого расположения элементов сети. Желательно направить данные по следующим пунктам:

  • количество и местонахождение розеток
  • пожелания по техническим нюансам работы сети
  • предполагаемое оборудование и материалы

Используя полученную информацию, Проектный отдел создает эскиз, на котором обозначает все кабельные трассы. После этого составляется смета с указанием стоимости оборудования, материалов и услуг.

Разработка проекта ЛВС для крупных организаций

Работы по проектированию ЛВС предприятия отличаются большей трудоемкостью и комплексным подходом, с учетом всех особенностей ИТ-инфраструктуры. Разрабатывается техническая документация, в которую включаются:

  • Разработка совместной работы входящих в сеть компьютеров. Формируется информационное взаимодействие устройств, учитывается используемое программное обеспечение.
  • Подготовка проекта кабельной системы. По плану здания определяются маршруты прокладки кабельных трасс, определяются места под коммутационное оборудование, по нему составляются спецификации.

Существует три основные задачи, которые должны быть выполнены при проектировании ЛВС организации:

  • разработка наиболее эффективной сетевой конфигурации
  • выбор пассивного и активного сетевого оборудования
  • обеспечение безопасности данных

Пассивное оборудование для ЛВС

В большинстве случаев проектирование ЛВС не предусматривает автоматического выбора одного вида оборудования, Клиенту предлагается несколько вариантов, основанных на его пожеланиях по стоимости и качеству. В комплекс пассивных устройств входят компьютерные розетки, кабельные каналы, шкафы для установки телекоммуникационного оборудования, патч панели. Проводится расчет портов для организации связи между узлами, протяженность кабелей и кабельных каналов, все узлы указываются на чертеже.

Активное оборудование для ЛВС

Когда топология сети сформирована, и расположение всех пассивных компонентов указано, проектирование ЛВС предприятия переходит к определению типа и численности подключаемого активного оборудования:

  • Коммутаторы. Необходимы для объединения сетевых узлов в рамках определенного сегмента или сегментов сети.
  • Маршрутизаторы. Объединяют локальную сеть и интернет в соответствии с установленными требованиями, осуществляется фильтрация трафика.



их нормативных документов.

Порядок проектирования локальных сетей

Типовое проектирование ЛВС может выполняться в несколько этапов и предусматривает определение следующих характеристик:

· основных и второстепенных задач, возлагаемых на сеть;

· функциональных возможностей сети;

· пропускной способности различных участков и характера передаваемой информации;

· вида монтируемой сети;

· возможности прокладки кабелей внутри помещений и обеспечения их безопасной эксплуатации;

· структуры ЛВС, ее иерархии и основных частей по отделам, рабочим местам;

· возможности дальнейшего расширения сети;

· необходимости подключения к уже существующим локальным сетям предприятия и к глобальной сети Интернет;

· возможности использования средств защиты информации.

Все работы, которые предусматривает проектирование компьютерных сетей, выполняются в строгом соответствии с предварительным планом, разработанным на основе ТЗ. Одним из приоритетных условий является простота обслуживания, монтажа, а при необходимости и демонтажа локальной сети предприятия.

Исходные данные

Важность этого этапа связана как с необходимостью упорядочивания требований к создаваемой ЛС и ее отдельным составляющим для обеспечения возможности принятия в будущем взвешенных конкретных решений, так и с ее обоснованием.

При создании новой сети для какого-нибудь предприятия желательно учитывать следующие факторы:

· Требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу).

· Структура , иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия).

· Основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе). Характер передаваемой по сети информации (данные, оцифрованная речь, изображения), который непосредственно сказывается на требуемой скорости передачи (до нескольких сотен Мбит/с для телевизионных изображений высокой четкости).

· Технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров , концентраторов, коммутаторов) и его стоимость.

· Возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля.

· Обслуживание сети и контроль ее безотказности и безопасности.

· Требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д.

· Необходимость подключения к глобальным или к другим локальным сетям.

Вполне возможно, что после изучения всех факторов выяснится, что можно обойтись без сети, избежав тем самым довольно больших затрат на аппаратуру и программное обеспечение , установку, эксплуатацию, поддержку и ремонт сети, зарплату обслуживающему персоналу, и т.д.

Сеть по сравнению с автономными компьютерами порождает множество дополнительных проблем: от простейших механических (компьютеры, подключенные к сети, труднее перемещать с места на место ) до сложных информационных (необходимость контролировать совместно используемые ресурсы, предотвращать заражение сети вирусами). К тому же пользователи сети уже не так независимы, как пользователи автономных компьютеров, им надо придерживаться определенных правил, подчиняться установленным требованиям, которым их необходимо научить.

Наконец, сеть остро ставит вопрос о безопасности информации, защиты от несанкционированного доступа, ведь с любого компьютера сети можно считать данные с общих сетевых дисков. Защитить один компьютер или даже несколько одиночных гораздо проще, чем целую сеть . Поэтому приступать к установке сети целесообразно только тогда, когда без сети работа становится невозможной, непроизводительной, когда отсутствие межкомпьютерной связи сдерживает развитие дела.

Требования и варианты решений при выборе размера и структуры сети , сетевого оборудования и программного обеспечения будут рассмотрены в последующих разделах. В начале проектирования сети необходимо провести полную "инвентаризацию " имеющихся компьютеров и их программного обеспечения, а также периферийных устройств (принтеров, сканеров и т.д.). Это позволит при организации сети исключить ненужное дублирование (оборудование и программное обеспечение теперь могут быть разделяемыми ресурсами), а также поставить задачи модернизации (апгрейда) как аппаратных, так и программных средств. Для корректного определения характеристик компьютеров целесообразно использовать специальные диагностические программы или встроенные программы ОС (например, в ОС Windows Millennium это программа "Сведения о системе" из раздела служебных программ и программа "Система" из панели управления). Следует выбирать такие варианты программ, которые обеспечивают получение правильных данных ("старые" диагностические программы могут неверно указать тип процессора и версию ОС), а также сохранение данных в файле (это особенно ценно при большом числе компьютеров). Кроме того, следует уделить внимание наличию встроенной сетевой карты или сетевого контроллера на системной плате, а также типу поддерживаемых ими сетевых стандартов (как правило, поддерживается сеть Ethernet на витой паре, но принципиально знать ее разновидность – 10/100/1000 Мбит/c). Не все характеристики компьютеров, которые важны при их объединении в сеть , могут быть определены описанными выше способами. Из сопроводительной документации к компьютеру или после вскрытия системного блока можно и нужно определить число и тип свободных слотов (разъемов) расширения, а также максимальную мощность блока питания. Это необходимо для оценки возможности установки в компьютер новых плат.

Выбор оборудования

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

· уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

· скорость передачи информации и возможность ее дальнейшего увеличения;

· возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

· метод управления обменом в сети (CSMA /CD, полный дуплекс или маркерный метод );

· разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

· стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов , репитеров , концентраторов, коммутаторов).

Всем этим часто пренебрегают, а напрасно: заменить программное обеспечение сравнительно просто, а вот замена аппаратуры, особенно прокладка кабеля, обходится порой очень дорого, а иногда бывает просто невозможна. В первую очередь следует проанализировать применимость для рассматриваемого случая сети Ethernet , как наиболее популярной, недорогой и допускающей развитие (Fast Ethernet иGigabit Ethernet ).

Проблема выбора типа кабеля достаточно подробно рассматривалась ранее. В предположении, что возможность выбора в данном случае существует, стоит повторить основные аргументы в пользу того или иного выбора (см. табл. 15.1).

Таблица 15.1. Аргументы при выборе типа кабеля
Тип кабеля Аргументы при выборе
за против
неэкранированная витая пара UTP (категория 3 или выше) · доступность по цене; · доступность инструментов для установки разъемов (RJ45); · удобство прокладки кабеля (гибкий); · относительная простота ремонта при повреждении; · поддержка перспективных высокоскоростных сетей (Fast и Gigabit Ethernet) при использовании кабеля категории 5 или выше. · относительно низкая устойчивость к электромагнитным помехам; · сравнительно малые допустимые расстояния кабельных соединений, особенно для высокоскоростных сетей; · невозможность использования во внешних участках соединений (между зданиями).
экранированная витая пара STP (оплеточный экран) 1 · повышенная устойчивость к электромагнитным помехам. · несколько более высокая цена по сравнению с кабелем типа UTP .
экранированная витая пара FTP (экран из фольги) 2 подобно предыдущему типу кабеля
многомодовыйоптоволоконный кабель · практическая нечувствительность к внешним электромагнитным помехам и отсутствие собственного излучения; · поддержка перспективных высокоскоростных сетей, в том числе на расстояниях, недоступных при использовании витой пары. · относительно высокая цена кабеля и сетевого оборудования; · сложность установки (требуется специальный инструмент и высокая квалификация персонала); · низкая ремонтопригодность; · чувствительность к воздействиям факторов окружающей среды (могут вызвать помутнениеоптоволокна ).
одномодовыйоптоволоконный кабель · улучшенные технические характеристики по сравнению с многомодовым кабелем (возможность увеличения скорости передачи или длины соединений). · более высокая цена; · сложная установка и ремонт.
беспроводные соединения (радио и инфракрасные каналы) · устранение необходимости организации кабельной системы; · мобильность рабочих станций (простота их перемещения внутри зданий или вблизи от центрального компьютера с излучающей антенной); · возможность организации глобальных сетей (с использованием радиоканалов и спутниковой связи). · относительно дорогое оборудование; · сильная зависимость надежности соединения от наличия препятствий (для радиоволн) и пыли в помещении (для инфракрасных каналов); · довольно низкая скорость передачи (максимум до нескольких Мбит/с) и невозможность ее существенного увеличения.

В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP . Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости. Рекомендации по организации кабельной системы, в том числе, содержащиеся в стандартах на структурированные кабельные системы (СКС ), рассмотрены в отдельном разделе "Проектирование кабельной системы" Лекции 16.

Еще одна важная задача – это выбор компьютеров. Если для рабочих станций или невыделенных серверов обычно используют те компьютеры, которые уже имеются на предприятии, то выделенный сервер желательно приобретать специально для сети. Лучше, если это будет быстродействующий специализированный компьютер -сервер , спроектированный с учетом специфических нужд сети (такие серверы выпускаются всеми крупнейшими производителями компьютеров).

Требования к серверу:

· Максимально быстрый процессор (компания Microsoft рекомендует для своей операционной системы Windows Server 2003 процессор с тактовой частотой не менее 500 МГц). Типичная величина тактовой частоты процессора для сервера сейчас составляет 2-3 ГГц. Для больших сетей применяют и многопроцессорные серверы (иногда до 32 процессоров).

· Большой объем оперативной памяти (фирма Microsoft рекомендует для своей операционной системы Windows Server 2003 объем памяти не менее 256 мегабайт, такие же требования фирмы Novell для NetWare 6). Типичный объем оперативной памяти сервера сейчас составляет 512 Мбайт-20 Гбайт. Большой объем памяти сервера даже важнее быстродействия процессора, так как позволяет эффективно использовать кэширование дисковой информации, храня в памяти копии тех областей диска, с которыми производится наиболее интенсивный обмен.

· Быстрые жесткие диски большого объема. Типичная величина объема диска сервера сейчас составляет 150-500 Гбайт. Дисководы должны быть совместимы с сетевой операционной системой (то есть их драйверы обязательно должны входить в набор драйверов, поставляемый с ОС). Широко применяют SCSI-дисководы, которые быстрее традиционных IDE-дисководов. В серверах часто предусматривают возможность "горячей" замены дисков (без выключения питания сервера), что очень удобно.

· Специализированные серверы уже содержат в своем составе сетевые адаптеры с оптимальными характеристиками. Если в качестве сервера используется обычный персональный компьютер, то сетевой адаптер для него надо выбирать наиболее быстродействующий.

· Видеомониторы, клавиатуры и мыши не являются обязательными принадлежностями сервера, так как сервер, как правило, никогда не работает в режиме обычного компьютера.

Если есть возможность выбора компьютеров для рабочих станций, то стоит проанализировать целесообразность применения бездисковых рабочих станций (с загрузкой операционной системы через сеть ). Это сразу снизит стоимость сети в целом или позволит при тех же затратах купить более качественные компьютеры: с быстрыми процессорами, с хорошими мониторами, с большой оперативной памятью. Правда, в настоящее время использование бездисковых компьютеров считается не самым лучшим решением. Ведь в этом случае всю информацию компьютер получает через сеть и передает в сеть , что может вызвать чрезмерную загрузку сети. Бездисковые рабочие станции допустимы только при малых сетях (не более 10-20 компьютеров). В идеале значительная часть всех информационных потоков (не менее 80%) должна оставаться внутри компьютера, а к сетевым ресурсам обращения должны быть только в случае действительной необходимости. Таким образом, упоминавшееся "правило 80/20" работает и в этом случае.

При отказе от использования гибких дисков на каждом компьютере сети можно существенно повысить ее устойчивость к вирусам и несанкционированному доступу к данным. Дисковод гибкого диска вполне может быть только на одной рабочей станции сегмента или даже всей сети. Причем эта рабочая станция должна контролироваться администратором сети . Она может быть расположена в отдельной комнате вместе с концентраторами, коммутаторами, маршрутизаторами.

Для любой сети крайне критична ситуация перебоев в системе электропитания. Несмотря на то, что многие сетевые программные средства применяют специальные меры против этого, как и против других отказов аппаратуры (например, дублирование дисков), проблема очень серьезная. Иногда отключение питания может полностью и надолго вывести сеть из строя.

В идеале защищенными от отключения питания должны быть все серверы сети (желательно и рабочие станции). Проще всего этого добиться, если сервер в сети всего один. Источник бесперебойного питания при сбое питания переходит на питание подключенного компьютера от аккумулятора и подает специальный сигнал компьютеру, который за короткое время завершает все текущие операции и сохраняет данные на диске. При выборе источника бесперебойного питания надо, прежде всего, обращать внимание на максимальнуюмощность , которую он обеспечивает, и на время поддержания им номинального уровня напряжения (это время составляет от нескольких минут до нескольких часов). Стоимость устройства довольно высока (до нескольких тысяч долларов). Поэтому целесообразно один источник бесперебойного питания применять для двух-трех серверов.

Наиболее устойчивы к отказам питания портативные компьютеры (ноутбуки). Встроенный аккумулятор и низкое потребление энергии обеспечивают их нормальную работу без внешнего питания в течение одного-двух часов и даже более. Если еще учесть низкий уровень излучений и высокое качество изображения мониторов этих компьютеров, то стоит всерьез рассмотреть возможность использования ноутбуков в качестве рабочих станций, а вероятно, и не слишком мощного, невыделенного сервера. Тем более что многие ноутбуки имеют встроенные сетевые адаптеры довольно неплохого качества. Особенно удобно применение ноутбуков в одноранговых сетях с множеством серверов. Применение внешних источников бесперебойного питания в подобных случаях становится чересчур дорогим удовольствием.

Кроме перечисленных проблем проектировщику сети приходится решать задачи, связанные с выбором сетевых адаптеров, репитеров , концентраторов, коммутаторов и маршрутизаторов, но об этом уже достаточно сказано в предыдущих главах. Стоит только отметить, чтопроизводительность сети и ее надежность определяются самым низкокачественным ее компонентом. При покупке дорогих концентраторов или коммутаторов, не стоит экономить, например, на сетевых адаптерах. Верно и обратное. Желательно, чтобы все компоненты оборудования максимально полно соответствовали друг другу.

Определение сетевой модели

Сетевая модель определяет способ хранения данных и расположение линий связи, по которым эти данные передаются. В каждой сети может быть реализована одна или сразу несколько стандартных моделей. В настоящее время наиболее распространены четыре модели, предоставляющие пользователям доступ к сетевым приложениям и данным:

1. Распределенная среда (среда "мэйнфрейма")

Эта модель была самой первой и остается популярной по сей день. Все ресурсы сети такой модели располагаются на сервере, который отвечает за управление и хранение всех данных компании. Каж­дый пользователь сети для запуска процессов на сервере обращается к нему со своего видеотерми­нала или бездисковой рабочей станции.

Основные достоинства и недостатки данной среды:

Сервер является наиболее уязвимым компонентом к отказам сети

Отсутствие необходимости модернизации рабочих станций клиентов для поддержки новых при­ложений

Снижение производительности сети при перегрузке сервера

Невозможность дальнейшей модернизации и расширения в случае неправильного выбора сервера

Несложное управление вопросами безопасности физического доступа к серверу.

2. Среда клиент/сервер

На современной стадии развития технологий совместного использования данных и ресурсов эта модель является наиболее популярной и может быть реализована в организациях самого разного масштаба. Здесь сервер используется только для предоставления доступа к приложениям и хранения сгенерированных данных. Вся обработка данных выполняется на рабочей станции, что улучшает производительность работы сети и снижает загруженность сервера.

Основные достоинства и недостатки среды клиент/сервер:

Необходимость более тщательного по сравнению с другими моделями планирования

Возможность функционирования рабочих станций даже при отсутствии сервера

Необходимость в случае модернизации сети наращивания производительности не только сер­вера, но и рабочей станции

Недостаточная безопасность данных, которые хранятся на рабочих станциях

Возможность расширения до уровня промышленной сети

3. Одноранговая среда

Эта модель разработана для небольших (до 15 рабочих станций) локальных сетей и чаще всего разворачивается в малых офисах. Принцип ее работы построен на том, что каждая рабочая станция функционирует в режиме сервера, предоставляя доступ к своим данным и устройствам любой другой станции, обладающей для этого необходимыми полномочиями.

Достоинства и недостатки одноранговой модели:

Привлекательное отношение стоимость/эффективность, причиной чего является отсутствие вы­деленного сервера

Рабочим станциям предоставлен доступ ко всем ресурсам

Отсутствие централизованного управления и обеспечения безопасности

Невозможность преобразования в большую сеть

Возможность сбоя всей сети после выхода из строя отдельной рабочей станции

4. Среда, развернутая на базе WWW

Структура модели напоминает среду мэйнфрейма, в которой центральный сервер предоставляет пользователям свои "страницы" информации для просмотра и взаимодействия с ними. Каждый пользователь такой сети может использовать эти страницы либо на своей локальной машине, либо на сервере.

Основные достоинства и недостатки этой среды:

Заманчивое соотношение стоимость/эффективность в случае использования с целью объединения локальной и глобальной сети

Возможность инсталляции и обновления версий приложений без необходимости непосредственного взаимодействия с рабочими станциями клиентов

Наиболее уязвимым к отказам звеном сети является Web-сервер

Недостаточно надежное обеспечение безопасности из-за возможности внешнего доступа к сети

Возможность развертывания в средах с низкой пропускной способностью или большим графиком

Возможность интеграции с Internet.

Выбор программного обеспечения

Сетевые ОС

После выбора оптимальной сетевой модели и составления списков необходимых приложений сетевыми специалистами и пользователями следует определить возможные сетевые операционные системы. Учитываемые при принятии данного решения факторы очень похожи на рассмотренные выше:

Стоимость и схема лицензирования

Простота инсталляции и конфигурации

Простота использования

Минимум усилий для обслуживания

Доступный уровень технической поддержки


  • Требования к ресурсам компьютера

Поддержка аппаратных средств

Возможность последующей модернизации

Уровень поддержки независимых разработчиков (как прикладного ПО, так и самой ОС)

Возможности обучения системных администраторов

Выбор аппаратных средств

Выбранное программное обеспечение6 определяет требования к аппаратному обеспечению. Требования к аппаратным средствам сети можно условно разделить на три основных типа:

Требования к аппаратным средствам сервера

Требования к аппаратным средствам рабочей станции

Требования к периферийным устройствам (принтеры, модемы, сканеры и т.д.)

Рекомендуется устанавливать оборудование компании, которая лидирует в данной области рынка, предлагает хорошую поддержку своих продуктов, обеспечивает решение проблем совместимости своих аппаратных средств с аппаратными средствами других производителей.

Выбор аппаратных средств сервера практически полностью определяется используемой сетевой операционной системой, а оборудование рабочих станций определяется приложениями, которые планируется на них запускать. Оборудование пользователей желательно разделить на несколько категорий. Например, для разработчиков ПО, САПР, художников аналитиков фирмы рекомендуются старшие модели РС, для помощников администраторов, агентов по сбыту,секретарей и т.д. – стандартные модели РС, для руководителей, менеджеров - старшие модели РС или, если они часто перемещаются, то мощные портативные РС.

Последним пунктом рассмотрения являются периферийные устройства. Как правило, их выбор определяется коммерческими требованиями каждого отдела. Например, есть ли необходимость в высококачественной печати графики? Требуется ли высокая скорость печати? Нужен ли для работы цветной принтер?

Располагать периферийные устройства целесообразно в тех местах, где они будут доступны максимальному количеству пользователей.

При оформлении итоговой документации на аппаратные средства сети необходимо составить следующие основные спецификации:

Аппаратные средства настольных систем:

Производитель и модель системы (указать отдельно для разных категорий пользователей)

Процессор

Жесткие диски

Сетевые адаптеры

Аппаратные средства серверов

Производитель и модель системы

Процессор

Жесткие диски (указать все способы резервирования: зеркальное отображение, дублирование, использование массивов RAID)

Сетевые адаптеры

Дополнительные периферийные устройства

Изготовитель и модель периферийных систем

Специфические настройки узла

Используемые интерфейсы (последовательный, параллельный или другой)

Оценка трафика сети

После выбора окончательной конфигурации аппаратных средств и ПО сети необходимо оценить объемы и типы передаваемых в ней данных в соответствии со схемой потоков данных. Это позволит определить возможные периоды максимальной и средней загрузки сети, оценить ее масштабируемость, провести анализ размещения информации на серверах и распределенной обработки информации внутри рабочих групп. Это даст возможность оптимизировать архитектуру сети для равномерного распределения нагрузки, правильно выполнить ее сегментирование, выбрать необходимые сетевые устройства типа концентраторов, коммутаторов, маршрутизаторов и шлюзов.

Документация

Документация по сетевому проекту должна содержать следующие сведения:


  • Коммерческие требования

  • Логическая схема

  • Физическая схема

  • Прикладное ПО (смета затрат)

  • Сетевой ПО (смета затрат)

  • Аппаратные средства (сервера, рабочие станции и периферийные устройства) (смета затрат)

  • Сетевые аппаратные средства (смета затрат)

  • Общая смета затрат

Необходимо по каждому пункту да­вать краткие объяснения о том, какие альтернативы существовали, и почему было выбрано то или иное решение.

Администрирование

Понятие "сетевое администрирование" описывает все аспекты установки и поддержки пользователей/ групп или файлов/каталогов. Хотя значение этого термина одинаково для всех сетевых сред, работа сетевых администраторов на различных узлах существенно отличается.

Уровень технических знаний и навыков работы администраторов также значительно отличается. В приведенном ниже списке перечислены вопросы, на которые сетевой администратор должен знать ответы:

Как зарегистрировать новых пользователей?

Как удалить уже зарегистрированных пользователей?

Какова структура томов на сервере?

Какие каталоги расположены в отдельных томах?

Как спланированы мероприятия резервирования?

Существуют ли какие-либо особые требования к конфигурации узла?

Каков уровень безопасности каждого каталога отдела или пользователя?

Необходимо ли копировать данные на центральный сервер с целью резервирования их на случай сбоя в работе локального оборудования?

Каким образом настраивается сервер?

С чем связаны возможные сбои в работе сервера?

Приведенный список описывает все основные обязанности сетевых администраторов по поддержке нормальной работы сервера.

Для организации управления и поддержки сети необходима документация, которая содержала бы следующие основные разделы:

Работа с пользователями

Соглашения о присвоении пользовательских имен

Правила регистрации и удаления пользователей

Управление информацией

Соглашения о присвоении имен томов

Структура каталогов (приложения, каталоги пользователей, каталоги отделов)

Ограничения на размер каталогов (необязательно)

Управление сетью

Соглашения о присвоении имен серверов

Сведения о маршрутизаторах и шлюзах

Безопасность

Сценарии входа в сеть/привилегии различных отделов

Ограничение доступа с помощью паролей

Определение часов доступа

Средства восстановления (загрузочные диски, редакторы поврежденных секторов, определенные кон­фигурационные файлы сервера и т.п.).

Отслеживание (ведение статистики), разрешение возникающих проблем

Для поддержания работоспособного состояния сети необходимо разработать план восстановления ее работоспособности после аварийной ситуации и план поддержки работы сети. Типичный план восстановления работоспособности сети включает следую­щие моменты:

Определение уровней важности всех приложений и систем (необходимый, жизненно важный, кри­тически важный)

Составление описаний систем среды (электрическая, нагревание/охлаждение)

Определение групп, ответственных за устранение сбоев, и ситуаций, в которых к этим группам сле­дует обращаться

Определение видов поддержки, предоставляемой группами

Определение характеристик аппаратных средств (эта информация берется из документации)

Оценка и составление плана действий на непредвиденные ситуации (простой, замена, функциони­рование в автономном режиме)

Выбор руководителя, которого в первую очередь следует известить о сбое в работе сети

Определение действий в нестандартных ситуациях (пожар, угроза взрыва бомбы, стихийное действие)

Составление расписания отключений и тестирования критически важных систем

Несмотря на кажущуюся тривиальность этих пунктов, они являются основными моментами не только корректного функционирования сети, но и успешной карьеры сетевого админи­стратора.

В обязанности отдела по обслуживанию сети также входит поддержка пользователей , организация мероприятий по их обучению и оказание помощи в решении их проблем. Поддержка может быть организована в виде электронной почты, центральной базы данных, к которой с вопросами обращаются пользова­тели, в простейшем случае – телефонной связи.

Ведение статистики и дальнейший анализ отказов определенного типа (постоянно сбоит какой-то вид обору­дования, существуют определенные факторы, влияющие на стабильность работы приложений) позволит принять верное решение о необходимости проведения модернизации или замены какого-либо компонента сетевой среды.

Основные этапы проектирования ЛВС

Перед выполнением работ по монтажу ЛВС проводятся мероприятия по разработке и проектированию локальных сетей. К этому процессу могут привлекаться различные специалисты, которые должны учесть все конструктивные особенности здания и отдельных помещений, где планируется прокладка ЛВС. В результате получают технический проект, составленный
в соответствии с нормами и правилами, принятыми в РФ. Он включает схему монтажа
локальной сети, описание ее основных характеристик, с указанием регламентирующих
их нормативных документов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1.6 Выбор технологий
    • Заключение

Введение

Темой моей курсовой работы стал процесс проектирования локальной вычислительной сети. Эта тема достаточно актуальна, так как она обусловлена всемирной тенденцией объединения компьютеров в сети. Компьютерная Вычислительная сеть -- это совокупность компьютеров, соединенных линиями связи. Кабелями, сетевыми адаптерами и другими коммуникационными устройствами называются линии связи. Можно сказать, что все сетевое оборудование работает под управлением прикладного программного обеспечения.

Актуальность темы определяется тем, что компьютерные сети прочно вошли в нашу жизнь. Они применяются почти во всех сферах жизни: от обучения до управления производством, от расчетов на бирже до домашней WI-FI сети. С одной стороны, они являются частным случаем распределённых компьютерных систем, а с другой - могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Цель: Спроектировать локальную вычислительную группы компьютерных классов учебного заведения.

Объект исследования: Процесс проектирования локальной вычислительной сети.

Методы исследования которые заключаются систематизация и анализа учебной и нормативно-технической литературы, а также интернет ресурса, рекомендация производителей телекоммуникационного оборудования и современных стандартов.

Предмет исследования: Поиск и обработка знаний о предмете исследования будет вестись с помощью учебных материалов, указанных в списке литературы и ресурсов сети Интернет.

Задачи работы:

1. Теоретическое обоснование построение вычислительной локальной сети;

2. Проработка предпосылок и условий для создания вычислительной сети;

3. Создание проекта вычислительной локальной сети.

1. Теоретическое обоснование построения вычислительной локальной сети

1.1 Локальные и глобальные сети. Сети других типов классификации

Для того чтобы создать проект ЛВС необходимо прежде всего с начало в первую очередь определить чем отличается ЛВС от других типов сетей.

Локальная вычислительная сеть представляет собой систему распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, вузов, банков, офисов и т. д.

· PAN -- персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

· ЛВС (LAN), -- локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода. Локальные сети являются сетями закрытого типа, доступ к ним разрешён только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

· CAN (кампусная сеть) -- объединяет локальные сети близко расположенных зданий.

· MAN -- городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

· WAN -- глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства.

· Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По способу управления

К лиент/сервер - в них выделяется один или несколько узлов (их название - серверы), выполняющих в сети управляющие или специальные обслуживающие функции, а остальные узлы (клиенты) являются терминальными, в них работают пользователи. Сети клиент/сервер различаются по характеру распределения функций между серверами, другими словами по типам серверов. При специализации серверов по определенным приложениям имеем сеть распределенных вычислений. Такие сети отличают также от централизованных систем, построенных на мэйнфреймах;

Одноранговые - сети в них все узлы равноправны; поскольку в общем случае под клиентом понимается объект (устройство или программа), запрашивающий некоторые услуги, а под сервером - объект, предоставляющий эти услуги, то каждый узел в одноранговых сетях может выполнять функции и клиента, и сервера.

По методу доступа

Ти пичная среда передачи данных в локальных вычислительных сетях - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы - компьютеры и возможно общее периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети. Доступ к сети - взаимодействие станции (узла сети) со средой передачи данных для обмена информацией с другими станциями. Управление доступом к среде - это установление последовательности, в которой станции получают доступ к среде передачи данных. Различают случайные и детерминированные методы доступа. Среди случайных методов наиболее известен метод множественного доступа с контролем несущей и обнаружением конфликтов.

1.2 Сравнительный анализ различных топологий сетей

На данный момент существуют способы объединение компьютеров. Способ описания конфигурации сети, схема расположения и соединения сетевых устройств характеризуется термином сетевая тополомгия.

Выделим наиболее распространенные сетевые топологии:

Шинная - локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всех других станций, подключенных к этой же среде передачи данных.

Кольцевая - узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии); данные, проходя по кольцу, поочередно становятся доступными всем узлам сети;

Звездная - имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов;

Иерархическая - каждое устройство обеспечивает непосредственное управление устройствами, находящимися ниже в иерархии.

Термин "топология", или "топология сети", характеризует физическое расположение компьютеров, кабелей и других компонентов сети.

Топология - стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина "топология", для описания физической компоновки используют также следующие:

Физическое расположение; компоновка;

Диаграмма;

Топология сети обуславливает ее характеристики. В частности, выбор той или иной топологии влияет:

На состав необходимого сетевого оборудования;

Характеристики сетевого оборудования;

Возможности расширения сети;

Способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Сравнительный анализ топологий организации сетей

Сравнительный анализ проведён на основе следующих показателей:

1) Простота структурной организации. Измеряемая количеством каналов связи между узлами сети

2) Надежность. Определяется наличием узких мест, при отказе которых сеть перестает функционировать. Надежность также характеризуется наличием альтернативных путей благодаря которым при отказе отдельных каналов связь может быть установлена в обход отказавшего участка

3) Производительность сети. Определяется количеством блоков данных передаваемых по сети в единицу времени. При этом необходимо учитывать возможность снижения скорости из-за конфликтов в сети

4) Время доставки сообщений. Может измеряться не обязательно во временных единицах.

5) Стоимость топологии. Определяется как стоимостью аппаратуры, так и сложностью реализации сети.

Составим таблицу сравнения различных топологий по указанным признакам. Признаки будут оцениваться значениями от 1 до 5, причем 1 - это наилучшее значение.

Таблица 1

Сравнительный анализ топологии сетей

Простота структурной организации и стоимость - это два показателя, которые очень сильно зависят друг от друга. По количеству каналов связи наиболее простой топологий является общая шина, которая имеет только 1 канал связи. Сеть строится на основе сетевой карты. Отсутствие сложностей при добавлении новых компьютеров, также добавляет преимущества этой топологии. Таким образом, общая шина несомненно самая простая и дешевая топология. К сравнительно дешевым можно также отнести топологи звезда и дерево, что связано с малым количеством типов связей между узлами, т.е. каждый компьютер связан напрямую с центральным узлом. Далее следует топология кольцо. В ней количество каналов связи равно количеству узлов. Полносвязная топология является наиболее сложной, и дорогой, соответственно. Это делает нецелесообразным использование такой топологии при построении больших сетей. При построении глобальных сетей наибольшее распространение получила многосвязная\ячеистая топология. Она занимает промежуточное положение по этим показателям, однако альтернативы этой топологии в глобальных сетях нет, потому что такие сети не строятся с нуля, а объединяет уже существующие сети.

Надежность. По этому показателю лидером является полносвязная топология. У нее отсутствуют узкие места и имеется максимально возможное количество альтернативных путей при выходе какого-либо звена из строя. Наименее надежные топологии: общая шина, звезда и дерево. Топология кольцо занимает промежуточное положение, также как и многосвязная.

Производительность сети. Если в качестве единицы измерения производительности использовать количество пакетов, передаваемых в сети за единицу времени, то очевидно, что производительность будет тем выше, чем больше пакетов одновременно находится в сети. С увеличением числа пакетов производительность растет и при каком-то значении наступает насыщение. Насыщение обычно связано с каким-то узлом или каналом в сети, нагрузка которого приближается к 1. Поэтому при построении такой сети стараются обеспечить равную пропускную способность для всех каналов, что обеспечивает максимальную производительность для полносвязной топологии и минимальную производительность для общей шины.

Время доставки. Необходимо анализировать при условии отсутствия узких мест в сети. В этом случае время доставки напрямую связано с числом хопов, т.е. каналов связи между соседними узлами. Время доставки в 1 хоп обеспечивает полносвязная топология. Наибольшее время доставки при большом количестве узлов в сети с топологией кольцо. Наиболее сложно оценить время доставки в топологии общая шина. Это связано с тем, что шина используется всеми узами, и если для одного узла время доставки оказывается минимальным, то другие узлы ждут своей очереди, и время доставки резко увеличивается. Кроме того в топологии общей шины на время доставки оказывает влияние оказывают коллизии, т.е. столкновения пакетов.

Представленный анализ носит качественный характер и не может использоваться для количественной оценки. Решение об использовании той или иной топологии должно приниматься на основе учета всех параметров. При этом может оказаться, что более сложная топология оказывается дешевле, чем более простая.

На основе приведенного материала, было принято решение о применении топологии "звезда", так как она обладает наибольшей эффективностью из представленных.

1.3 Анализ источников стандартизация сетей. Структура стандарта IEEE 802.x

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень делится в локальных сетях на два подуровня:

Логической передачи данных (Logical Link Control, LLC);

Управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Стандарты IEEE 802 имеют достаточно четкую структуру, указанную на рисунке 1.1.

Рисунок 1.1

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

802.1 - Internetworking - объединение сетей;

802.2 - Logical Link Control, LLC - управление логической передачей данных;

802.3 - Ethernet с методом доступа CSMA/CD;

802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

802.10 - Network Security - сетевая безопасность;

802.11 - Wireless Networks - беспроводные сети;

802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

На основе выполненного анализа было принято решение использовать при проектировании локальной вычислительной сети следующий подкомитет IEEE 802.3. Спецификация данного подкомитета будут рассмотрены ниже.

1.4 Исследование элементов структурированной кабельной системы (СКС)

Кабельная система является фундаментом любой сети. Ответом на высокие требования к качеству кабельной системы стали структурированные кабельные системы.

Структурированная кабельная система представляет собой набор коммуникационных элементов - кабелей, разъемов, коннекторов, кроссовых панелей и шкафов, которые удовлетворяют стандартам и позволяют создавать регулярные, легко расширяемые структуры связей.

Структурированная кабельная система состоит из трех подсистем: горизонтальной (в пределах этажа), вертикальной (между этажами) и подсистемы кампуса (в пределах одной территории с несколькими зданиями).

Для горизонтальной подсистемы характерно наличие большого количества ответвлений и перекрестных связей. Наиболее подходящий тип кабеля - неэкранированная витая пара категории 5.

Вертикальная подсистема состоит из более протяженных отрезков кабеля, количество ответвлений намного меньше, чем в горизонтальной подсистеме. Предпочтительный тип кабеля - волоконно-оптический.

Для подсистемы кампуса характерна нерегулярная структура связей с центральным зданием. Предпочтительный тип кабеля - волоконно-оптический в специальной изоляции.

Кабельная система здания строится избыточной, так как стоимость последующего расширения кабельной системы превосходит стоимость установки избыточных элементов.

Для строительства СКС почти всегда используются коммутаторы или концентраторы. В связи с этим появляется вопрос - какое устройство использовать?

При передаче данных между компьютерами пакет содержит не только передаваемые данные, но и адрес компьютера-получателя.

Концентратор игнорирует адрес, содержащийся в пакете, и пересылает данные всем компьютерам, подключенным к нему. Пропускная способность концентратора (количество бит в секунду, которые способен передавать концентратор) делится между задействованными портами, поскольку данные передаются всем одновременно. Компьютер читает адрес, и только законный получатель принимает пакет данных (остальные компьютеры его игнорируют).

Коммутатор работает более интеллектуально -- он хранит информацию о компьютерах в памяти и знает, где находится получатель. Коммутатор передает данные порту этого компьютера и обслуживает только этот порт.

Это крайне упрощенное описание принципов работы концентраторов и коммутаторов, но оно дает общее представление о процессе. Также учтите, что здесь описан очень простой коммутатор, тогда как для мощных коммутаторов, используемых в крупных сетях, существуют более совершенные технологии.

Кстати говоря, в маршрутизаторах имеются встроенные коммутаторы, а не концентраторы. .

На основе приведенной информации было принято решение о использовании коммутаторов (свичей) при постройке сети.

1.5 Выбор кабеля. Основные типы кабелей и их характеристики

Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории - способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), на основе которого затем был создан действующий стандарт EIA-568A. Стандарт EIA-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоскоростные сетевые приложения. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса.

Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на использование витой пары 5 категории. На этом кабеле работают протоколы со скоростью передачи данных 100 Мбит/с - FDDI, Fast Ethernet, l00VG-AnyLAN, а также более скоростные протоколы - АТМ на скорости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с (вариант Gigabit Ethernet на витой паре категории 5 стал стандартом в июне 1999 г.). Кабель категории 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконно-оптическим).

Наиболее важные электромагнитные характеристики кабеля категории 5 имеют следующие значения:

Полное волновое сопротивление в диапазоне частот до 100 МГц равно 100 Ом;

Величина перекрестных наводок NEXT в зависимости от частоты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;

Затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (на частоте 100 МГц);

Активное сопротивление не должно превышать 9,4 Ом на 100 м;

Емкость кабеля не должна превышать 5,6 нф на 100 м.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две - для передачи голоса.

Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие 8-контактные разъемы, похожие на обычные телефонные разъемы. RJ-11.

Данная информация позволяет сделать вывод о том, что для построения локальной сети наиболее предпочтителен кабель UTP 5-й категории. .

1.6 Выбор технологий

1.6.1 Технология Ethernet. Методы доступа и форматы кадров технологии Ethernet

Рассмотрим, каким образом описанные выше общие подходы к решению наиболее важных проблем построения сетей воплощены в наиболее популярной сетевой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет "достаточный" подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин "сетевая технология" чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, "технология сквозной маршрутизации", "технология создания защищенного канала", "технология IP-сетей".

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т.п., - и соединить их в соответствии с требованиями стандарта на данную технологию. Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использоваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного доступа к разделяемой среде, была радиосеть Aloha Гавайского университета).

В стандарте Ethernet строго зафиксирована топология электрических связей. Компьютеры подключаются к разделяемой среде в соответствии с типовой структурой "общая шина". С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами - сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уникальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта величина является пропускной способностью сети Ethernet. Изначально сеть Ethernet выглядела так (рис. 1.2)

Рисунок 1.2.

Метод доступа

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. Поэтому важной частью технологии Ethernet является процедура определения доступности среды.

После того как компьютер убедился, что сеть свободна, он начинает передачу, при этом "захватывает" среду. Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя.

Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду передачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр помещается во внутренний буфер сетевого адаптера. Таким образом, компьютер-адресат получает предназначенные ему данные. .

Формат кадров

Существует несколько форматов Ethernet-кадра.

Первоначальный Version I (больше не применяется).

Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX-- наиболее распространена и используется по сей день. Часто используется непосредственно протоколом Интернет.

Рисунок 1. 3.Формат кадра Ethernet

Наиболее распространенный формат кадра Ethernet II

Novell -- внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

Кадр IEEE 802.2 LLC.

Кадр IEEE 802.2 LLC/SNAP.

Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

В качестве дополнения Ethernet-кадр может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

Разные типы кадра имеют различный формат и значение MTU.

На основе данной информации для локальной сети здания, рассматриваемой в курсовой работе, была выбрана технология Ethernet.

1.6.2 Высокоскоростные технологии компьютерных сетей: Fast Ethernet, Gigabit Ethernet, 10G Ethernet

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2. Поэтому рассматривая технологию Fast Ethernet, мы будем изучать только несколько вариантов ее физического уровня.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

Волоконно-оптический многомодовый кабель, используются два волокна; локальный вычислительный сеть кабель

Коаксиальный кабель, давший первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Ниже на рисунке наглядно показаны отличия технологии Fast Ethernet и Ethernet друг от друга.

Рисунок 1.4.

Gigabit Ethernet.

Основная идея разработчиков Gigabit Ethernet состояла в максимальном сохранении идей технологии Ethernet при достижении скорости 1000 Mb/s, сохраняя все форматы кадров Ethernet. По-прежнему существует полудплексная версия протокола, поддерживающая метод доступа CSMA/СD. Сохраняя дешевизну решения на основе разделяемой среды позволяет применять Gigabit Ethernet в небольших рабочих группах, имеющих быстрые серверы и рабочие станции. Поддерживаются все основные виды кабелей, используемых Ethernet в Fast Ethernet волоконно-оптический, витая пара категории 5, неэкранированная витая пара.

10-Gigabit Ethernet.

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

10GBASE-CX4 -- технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

10GBASE-SR -- технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового волокна (2000 МГц/км).

10GBASE-LX4 -- использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового волокна.

10GBASE-LR и 10GBASE-ER -- эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW -- эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

10GBASE-T, IEEE 802.3an-2006 -- принят в июне 2006 года после 4 лет разработки. Использует витую пару категории 6 (максимальное расстояние 55 метров) и 6а (максимальное расстояние 100 метров).

10GBASE-KR -- технология 10-гигабитного Ethernet для кросс-плат (backplane/midplane) модульных коммутаторов/маршрутизаторов и серверов (Modular/Blade).

Компания Harting заявила о создании первого в мире 10-гигабитного соединителя RJ-45, не требующего инструментов для монтажа -- HARTING RJ Industrial 10G .

1.6.3 Локальные сети на основе разделяемой среды: технология TokenRing, технология FDDI

Разделяемая среда -- способ организации работы сети, при котором сообщение от одной рабочей станции достигает всех других при помощи одного общего канала связи.

Алгоритм доступа к разделяемой среде - главный фактор, определяющих эффективность совместного использования среды конечными узлами локальной сети. Можно сказать, что алгоритм доступа формирует "облик" технологии, позволяет отличать данную технологию от других.

В технологии Ethernet применяется очень простой алгоритм доступа, позволяющий узлу сети передавать данные в те моменты времени, когда он считает, что разделяемая среда свободна. Простота алгоритма доступа определила простоту и низкую стоимость оборудования Ethernet. Негативным атрибутом алгоритма доступа технологии Ethernet являются коллизии, то есть ситуации, когда кадры, передаваемые разными станциями, сталкиваются друг с другом в общей среде. Коллизии снижают эффективность разделяемой среды и придают работе сети непредсказуемый характер.

Первоначальный вариант технологии Ethernet был рассчитан на коаксиальный кабель, который использовался всеми узлами сети в качестве общей шины. Переход на кабельные системы на витой паре и концентраторах (хабах) существенно повысил эксплуатационные характеристики сетей Ethernet.

В технологиях Token Ring и FDDI поддерживались более сложные и эффективные алгоритмы доступа к среде, основанные на передаче друг другу токена -- специального кадра, разрешающего доступ. Однако чтобы выжить в конкурентной борьбе с Ethernet, этого преимущества оказалось недостаточно.

Технология Token Ring (802.5)

Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию - отправитель.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

FDDI

Технология FDDI - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим называется режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями. .

1.7 Анализ спецификаций физической среды Fast Ethernet

Спецификации физической среды стандарта 802.3z

В стандарте 802.3z определены следующие типы физической среды:

Одномодовый волоконно-оптический кабель;

Многомодовый волоконно-оптический кабель 62,5/125;

Многомодовый волоконно-оптический кабель 50/125;

Двойной коаксиал с волновым сопротивлением 75 Ом.

Многомодовый кабель

Для передачи данных по традиционному для компьютерных сетей многомодовому волоконно-оптическому кабелю стандарт определяет применение излучателей, работающих на двух длинах волн: 1300 и 850 нм. Применение светодиодов с длиной волны 850 нм объясняется тем, что они намного дешевле, чем светодиоды, работающие на волне 1300 нм, хотя при этом максимальная длина кабеля уменьшается, так как затухание многомодового оптоволокна на волне 850 м более чем в два раза выше, чем на волне 1300 нм. Однако возможность удешевления чрезвычайно важна для такой в целом дорогой технологии, как Gigabit Ethernet.

Для многомодового оптоволокна стандарт 802.3z определил спецификации l000Base-SX и l000Base-LX.

В первом случае используется длина волны 850 нм (S означает Short Wavelength, короткая волна), а во втором - 1300 нм (L - от Long Wavelength, длинная волна).

Для спецификации l000Base-SX предельная длина оптоволоконного сегмента для кабеля 62,5/125 оставляет 220 м, а для кабеля 50/125 - 500 м. Очевидно, что эти максимальные значения могут достигаться только для полнодуплексной передачи данных, так как время двойного оборота сигнала на двух отрезках 220 м равно 4400 bt, что превосходит предел 4095 bt даже без учета повторителя и сетевых адаптеров. Для полудуплексной передачи максимальные значения сегментов оптоволоконного кабеля всегда должны быть меньше 100 м. Приведенные расстояния в 220 и 500 м рассчитаны для худшего по стандарту случая полосы пропускания многомодового кабеля, находящегося в пределах от 160 до 500 МГц/км. Реальные кабели обычно обладают значительно лучшими характеристиками, находящимися между 600 и 1000 МГц/км. В этом случае можно увеличить длину кабеля до примерно 800 м.

Одномодовый кабель

Для спецификации l000Base-LX в качестве источника излучения всегда применяется полупроводниковый лазер с длиной волны 1300 нм.

Основная область применения стандарта l000Base-LX - это одномодовое оптоволокно. Максимальная длина кабеля для одномодового волокна равна 5000 м.

Спецификация l000Base-LX может работать и на многомодовом кабеле. В этом случае предельное расстояние получается небольшим - 550 м. Это связано с особенностями распространения когерентного света в широком канале многомодового кабеля. Для присоединения лазерного трансивера к многомодовому кабелю необходимо использовать специальный адаптер. .

2. Создание проекта вычислительной локальной сети

При создании локальной вычислительной сети предполагается, что:

1. Трафик каждого класса изолирован от других.

2. Имеется три компьютерных класса в первом: пять компьютеров; во втором - одиннадцать компьютеров; в третьем - три компьютера.

3. Удалённость от места подключения составляет: 1-87 метров; 2-74 метра; 3-74 метра.

4. Сеть является одноранговой со скоростью 100 мб/с, без выхода к интернету.

Стоимость реализации проекта

Таблица 2

Затраты на приобретение сетевого оборудования

Оборудование

Характеристики

Количество

Сетевая карта

COM-3CSOHO100Tx Office Connect Fast Ethernet PCI 10\100 Base-TX

Коммутатор

COM-3C16471 SS 3 Baseline 2024 24*10\100TX

Коннектор

Антивирус

Операционная система

Таблица 3

Конфигурация компьютеров рабочей группы

Тип компьютера

Рабочая станция

Материнская плата

FM2 AMD A75 MSI FM2-A75MA-P33

Процессор

AMD Athlon II X2 250

Видеоадаптер

Встроен в МП

Сетевая карта

10/100/1000Mbps PCI Adapter, 32 bit, WOL, Jumbo, Retail

Блок питания

430 Watt ATX Power Supply

Жесткий диск

HDD Seagate 80Gb , 7200rpm, SATA-II, 8mb cache

INWIN C602 Black/Silver Middle ATX 430W (20+4pin, 12cm fan)

Клавиатура

Sven 330, Silver

A4-Tech MOP-59, red Optical, Mini, USB+PS/2, Roll

Итого:18550*19=352450

Общая стоимость проекта ЛВС без учета затрат на выполнения монтажных работ составило 548777 рублей.

Заключение

В ходе выполнения курсовой работы получены практические и теоретические навыки проектирование вычислительной локальной сети. Во время выполнения курсовой работы создана локальная сеть компьютерных классов учебного заведения.

Исследованы рекомендации производителей телекоммуникационного оборудования, основы стандартов, определены требования к создаваемой системе и, как результат, разработан проект локальной вычислительной сети (ЛВС) условного предприятия.

В курсовой работе представлены необходимые расчеты, рисунки и схемы, спецификация оборудования и материалов, необходимых для построения ЛВС.

Стоимость оборудования и программного обеспечения для сети в общей сложности составила 196327 рублей, а стоимость аппаратного обеспечения компьютеров составила 352450 рублей.

Список источников и литературы

1. В.Г. Олифер. Н.А. Олифер Компьютерные сети, принципы, технологии, протоколы 4-е издание 2010. - глава 2 стр. 55,3 стр. 103,5 стр. 139.

2. Пескова С.А., Кузин А.В., Волков А.Н. Сети и телекоммуникации (3-е изд.) 2008 стр. 232

4. Интернет - ресурс Lulu.ts6.ru. Режим доступа http.// 1.20.htm

5. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е издание 2012

6. Таненбаум Э. Компьютерные сети. Принципы, технологии, протоколы. / Э. Таненбаум. - СПб.: Питер, 2007.

7. Максимов Н.В. Компьютерные сети: Учебное пособие [Текст] / Н.В. Максимов, И.И. Попов - М.: ФОРУМ: ИНФРА-М, 2005. - стр. 109-111

8. Компьютерные сети. Учебный курс [Текст] / Microsoft Corporation. Пер. с анг. - М.: "Русская редакция" ТОО "Channel Trading Ltd.", 1998. -стр. 258.

9. Крейг Закер Компьютерные сети БХВ-Петербург, 2001 стр. 7, 253, 234

10. Кэти Айвенс Компьютерные сети Питер 2006 стр. 29.

11. www.ieeer8.org

Размещено на Allbest.ru

Подобные документы

    Понятие компьютерных сетей, их виды и назначение. Разработка локальной вычислительной сети технологии Gigabit Ethernet, построение блок-схемы ее конфигурации. Выбор и обоснование типа кабельной системы и сетевого оборудования, описание протоколов обмена.

    курсовая работа , добавлен 15.07.2012

    Особенности локальной вычислительной сети и информационной безопасности организации. Способы предохранения, выбор средств реализации политики использования и системы контроля содержимого электронной почты. Проектирование защищенной локальной сети.

    дипломная работа , добавлен 01.07.2011

    Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

    дипломная работа , добавлен 25.02.2011

    Аналитический обзор технологий локальных вычислительных сетей и их топологий. Описание кабельных подсистем для сетевых решений и их спецификаций. Расчет локальной вычислительной системы на соответствие требованиям стандарта для выбранной технологии.

    дипломная работа , добавлен 28.05.2013

    Особенности проектирования и модернизация корпоративной локальной вычислительной сети и способы повышения её работоспособности. Физическая структура сети и сетевое оборудование. Построение сети ГУ "Управление Пенсионного фонда РФ по г. Лабытнанги ЯНАО".

    дипломная работа , добавлен 11.11.2014

    Основные возможности локальных вычислительных сетей. Потребности в интернете. Анализ существующих технологий ЛВС. Логическое проектирование ЛВС. Выбор оборудования и сетевого ПО. Расчёт затрат на создание сети. Работоспособность и безопасность сети.

    курсовая работа , добавлен 01.03.2011

    Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа , добавлен 03.06.2013

    Проектирование локальной вычислительной сети, предназначенной для взаимодействия между сотрудниками банка и обмена информацией. Рассмотрение ее технических параметров и показателей, программного обеспечения. Используемое коммутационное оборудование.

    курсовая работа , добавлен 30.01.2011

    Назначение проектируемой локальной вычислительной сети (ЛВС). Количество абонентов проектируемой ЛВС в задействованных зданиях. Перечень оборудования, связанного с прокладкой кабелей. Длина соединительных линий и сегментов для подключения абонентов.

    реферат , добавлен 16.09.2010

    Назначение, функции и основные требования к комплексу технических и программных средств локальной вычислительной сети. Разработка трехуровневой структуры сети для организации. Выбор оборудования и программного обеспечения. Проектирование службы каталогов.

Лабораторная работа №2.

Цель работы: овладение навыками работы в Microsoft Office Visio, планирование и проектирование компьютерной сети.

Процесс построения (проектирования) сети представляет собой упрощенное моделирование не наступившей действительности и включает в себя следующие основные этапы:

1. Анализ задач, для решения которых создается сеть, а также определение объема финансирования проекта.

2. Проектирование физической структуры – этап, на котором анализируются начальные условия и создается детальный проект физической организации сети.

3. Проектирование инфраструктуры – этап, на котором определяются протоколы взаимодействия, используемые службы, политика безопасности и т.п. — т.е. логическая организация сети.

4. Развертывание – этап, связанный с прокладкой линий связи, установкой и настройкой оборудования.

Этап анализа является одним из важнейших, поскольку определяет все остальные решаемые задачи: как физическую структуру сети, так и логическую. Именно на данном этапе выступает основное различие компьютерных сетей.

На этапе проектирования решаются следующие задачи:

1. На основе определенных целевых требований к сети определяется необходимый состав оборудования и, прежде всего, компьютеров: количество, характеристики и т.д.

2. Определяется физическое расположение рабочих мест и определяются этажи и аудитории, которые будут охватываться сетью. При решении этой задачи должна учитываться принципиальная возможность прокладки линий связи к рабочим местам/помещениям.

3. Исходя из решаемых задач, стоимости и расположения, определяется тип физических линий связи, соединяющих рабочие места, состав и расположение коммуникационного оборудования (например, концентраторов).

4. Определяется способ подключения к Интернету: выбирается провайдер – организация, обеспечивающая подключение организации к сети Интернет. При выборе провайдера учитываются факторы: характеристики возможных физических соединений с провайдером, требования к оборудованию и необходимое дополнительное оборудование, начальная стоимость подключения, стоимость эксплуатации подключения, технологические ограничения подключения (невозможность использования некоторых служб).

5. Исходя из технических требований, определяется узел проектируемой сети, который будет являться шлюзом для подключения к Интернету и определяется место его расположения. При этом учитывается удобство физического соединения шлюза с проектируемой сетью и удобство подведения физических линий для подключения к Интернету.

Общий алгоритм, описывающий процесс построения сети:

1. Определение исходных данных.

– определение целей использования сети;

– определение требований к сети;

– характеристики используемого оборудования (компьютеры, сетевое оборудование, принтеры, модемы и др.);

– характеристика сетевого ПО (операционные системы, серверное ПО, антивирусное ПО);

– примерная схема здания в котором планируется строить сеть.

2. Проектирование сети.

– способ сегментирования и объединения сегментов (определение необходимых сегментов оборудования для их формирования);

– выбор типа кабеля (как правило выбирается неэкранированная витая пара);

– определение активных устройств (модемы, маршрутизаторы и т.п.);

– выбор программного обеспечения (серверные и клиентские ОС, серверное программное обеспечение и т.п.);

– разработка схемы сети (указываются узлы сети и длины соединительных кабелей).

3. Определение стоимости.

– анализ основных направлений затрат;

– составление примерной сметы затрат.

4. Примерный план проведения работ.

5. Развертывание сети.

При создании новой сети желательно учитывать следующие факторы:

– требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу);

– структура, иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия); основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе); характер передаваемой по сети информации;

– технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров, концентраторов, коммутаторов);

– возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля;

– обслуживание сети и контроль ее безотказности и безопасности;

– требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д. (например, если предполагается использование одного ресурса многими пользователями, то следует использовать серверную ОС);

– необходимость подключения к другим сетям (например, глобальным);

– имеющиеся компьютеры и их программное обеспечение, а также периферийные устройства (принтеры, сканеры и т.д.).

При выборе размера (под размером сети в данном случае понимается как количество объединяемых в сеть компьютеров, так и расстояния между ними) и структуры сети необходимо учитывать:

– количество компьютеров (следует оставлять возможность для дальнейшего роста количества компьютеров в сети);

– требуемую длину линий связи сети (например, если расстояния очень большие, может понадобиться использование дорогого оборудования).

– способы объединения частей сети (для объединения частей сети могут использоваться репитеры, репитерные концентраторы, коммутаторы, мосты и маршрутизаторы, причем в ряде случаев стоимость этого объединительного оборудования может даже превысить стоимость компьютеров, сетевых адаптеров и кабеля;

Возможность масштабирования (например, лучше приобретать коммутаторы или маршрутизаторы с количеством портов, несколько большим, чем требуется в настоящий момент).

Пример. Пусть небольшое предприятие занимает три этажа, на каждом по пять комнат, и включает в себя три подразделения, по три группы. В этом случае можно построить сеть таким образом (рис. 1):

Рабочие группы занимают по 1–3 комнаты, их компьютеры объединены между собой репитерными концентраторами. Концентратор может использоваться один на комнату, один на группу или один на весь этаж. Концентратор целесообразно расположить в помещении, в которое имеет доступ минимальное количество сотрудников.

Подразделения занимают отдельный этаж. Все три сети рабочих групп каждого подразделения объединяются коммутатором, а для связи с сетями других подразделений используется маршрутизатор. Коммутатор вместе с одним из концентраторов лучше поместить в отдельной комнате.

Общая сеть предприятия включает три сегмента сетей подразделений, объединенных маршрутизатором. Этот же маршрутизатор может использоваться для подключения к глобальной сети.

Серверы рабочих групп располагаются в комнатах рабочих групп, серверы подразделений – на этажах подразделений.

Рис. 1. Структура сети предприятия (С – серверы рабочих групп, РК – репитерные концентраторы, Ком – коммутаторы)

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

– уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

– скорость передачи информации и возможность ее дальнейшего увеличения;

– возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

– метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

– разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

– стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP. Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости.

При выборе сетевого программного обеспечения (ПО) надо, в первую очередь, учитывать следующие факторы:

– какую сеть поддерживает сетевое ПО: одноранговую, сеть на основе сервера или оба этих типа;

– максимальное количество пользователей (лучше брать с запасом не менее 20%);

– количество серверов и возможные их типы;

– совместимость с разными операционными системами и компьютерами, а также с другими сетевыми средствами;

– уровень производительности программных средств в различных режимах работы;

– степень надежности работы, разрешенные режимы доступа и степень защиты данных;

– какие сетевые службы поддерживаются;

– стоимость программного обеспечения, его эксплуатации и модернизации.

Еще до установки сети необходимо решить вопрос об управлении сетью. Даже в случае одноранговой сети лучше выделить для этого отдельного специалиста (администратора), который будет иметь всю информацию о конфигурации сети и распределении ресурсов и следить за корректным использованием сети всеми пользователями. Если сеть большая, то одним сетевым администратором уже не обойтись, нужна группа, возглавляемая системным администратором.

После установки и запуска сети решать эти вопросы, как правило, слишком поздно.

При проектировании следует определить возможные направления финансовых затрат (к данному этапу проектирования необходимые предпосылки для решения этой задачи уже имеются):

– дополнительные компьютеры и обновление существующих компьютеров. Необязательное направление затрат: при достаточном количестве и качестве существующих компьютеров их обновление не требуется (или требуется в минимальном объеме – например, для установки более современных сетевых карт); в одноранговой сети не нужен (хотя и желателен) также специальный файл-сервер.

– сетевые аппаратные средства (кабели и все, что необходимо для организации кабельной системы, сетевые принтеры, активные сетевые устройства – повторители, концентраторы, маршрутизаторы и т.д.).

– сетевые программные средства, прежде всего, сетевая ОС на необходимое число рабочих станций (с запасом).

– оплата работы приглашенных специалистов при организации кабельной системы, установке и настройке сетевой ОС, при проведении периодической профилактики и срочного ремонта. Необязательное направление затрат: для небольших сетей со многими из этих работ может и должен справляться штатный сетевой администратор (возможно, с помощью других сотрудников данного предприятия).

Спроектировать компьютерную сеть (собрать исходные данные; выбрать: размер и структуру сети, оборудование, сетевые программные средства; спроектировать кабельную систему; рассчитать примерную стоимость оборудования) в соответствии с № варианта.

Контрольные вопросы:

1.Какие этапы включает процесс построения сети?

2. Классификация локальных вычислительных сетей?

3. Базовые технологии локальных сетей?

4. Топология локальной вычислительной сети?

5.Маршрутизатор, коммутатор?

6.Плюсы и минусы Microsoft Office Visio?

Статьи к прочтению:

Этапы проектирования локальных сетей

Выбор размера и структуры сети

Под размером сети в данном случае понимается как количество объединяемых в сеть компьютеров, так и расстояния между ними. Надо четко представлять себе, сколько компьютеров (минимально и максимально) нуждается в подключении к сети. При этом необходимо оставлять возможность для дальнейшего роста количества компьютеров в сети, хотя бы процентов на 20–50.

Требуемая длина линий связи сети также играет не малую роль в проектировании сети. Например, если расстояния очень большие, может понадобиться использование дорогого оборудования. К тому же с увеличением расстояния резко возрастает значимость защиты линий связи от внешних электромагнитных помех.

Под структурой сети понимается способ разделения сети на части (сегменты), а также способ соединения этих сегментов между собой. Сеть предприятия может включать в себя рабочие группы компьютеров, сети подразделений, опорные сети, средства связи с другими сетями.

Выбор оборудования

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

Уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

Скорость передачи информации и возможность ее дальнейшего увеличения;

Возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

Метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

Разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

Стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

Еще одна важная задача – это выбор компьютеров . Если для рабочих станций или невыделенных серверов обычно используют те компьютеры, которые уже имеются на предприятии, то выделенный сервер желательно приобретать специально для сети.

Выбор сетевых программных средств

При выборе сетевого программного обеспечения (ПО) надо, в первую очередь, учитывать следующие факторы:

Какую сеть поддерживает сетевое ПО: одноранговую, сеть на основе сервера или оба этих типа;

Максимальное количество пользователей (лучше брать с запасом не менее 20%);

Количество серверов и возможные их типы;

Совместимость с разными операционными системами и компьютерами, а также с другими сетевыми средствами;

Уровень производительности программных средств в различных режимах работы;

Степень надежности работы, разрешенные режимы доступа и степень защиты данных;

Какие сетевые службы поддерживаются;

И, возможно, главное – стоимость программного обеспечения, его эксплуатации и модернизации.

Выбирая между продуктами компаний Microsoft и другими сетевыми ОС (например, Novell), необходимо иметь в виду, что традиционно преимуществами сетевых продуктов (например, сетевые ОС NetWare) считаются:

Более совершенная архитектура сетевой ОС;

Универсальность и функциональная полнота программных средств;

Большее быстродействие при данном типе аппаратуры;

Упрощенное администрирование сети;

Значительно более высокая защищенность от вирусов и несанкционированного доступа;

Поддержка различных типов пользователей на разных компьютерных платформах.

Главным преимуществом продуктов Microsoft считается лучшая совместимость с пользователями на базе ОС Microsoft Windows.

Выбор с учетом стоимости различных средств для построения компьютерной сети. Проектирование кабельной системы, оптимизация и отладка сети.

Выбор с учетом стоимости

Прежде всего следует определить возможные направления финансовых затрат (к данному этапу проектирования необходимые предпосылки для решения этой задачи уже имеются):

Дополнительные компьютеры и апгрейд существующих компьютеров. Необязательное направление затрат: при достаточном количестве и качестве существующих компьютеров их апгрейд не требуется (или требуется в минимальном объеме – например, для установки более современных сетевых карт); в одноранговой сети не нужен (хотя и желателен) также специальный файл-сервер.

Сетевые аппаратные средства (кабели и все, что необходимо для организации кабельной системы, сетевые принтеры, активные сетевые устройства – повторители, концентраторы, маршрутизаторы и т.д.).

Сетевые программные средства, прежде всего, сетевая ОС на необходимое число рабочих станций (с запасом).

Оплата работы приглашенных специалистов при организации кабельной системы, установке и настройке сетевой ОС, при проведении периодической профилактики и срочного ремонта. Необязательное направление затрат: для небольших сетей со многими из этих работ может и должен справляться штатный сетевой администратор (возможно, с помощью других сотрудников данного предприятия).

Проектирование кабельной системы

При выборе кабеля в первую очередь надо учитывать требуемую длину, а также защищенность от внешних помех и уровень собственных излучений. При большой длине сети и необходимости обеспечить секретность предаваемых данных или высоком уровне помех в помещении незаменим оптоволоконный кабель. Следует отметить, что применение оптоволоконных вместо электрических кабелей даже при достаточно комфортных условиях позволяет существенно (на 10-50 процентов) поднять производительность сети за счет снижения доли искаженных информационных пакетов.

При проектировании кабельных систем для локальных сетей накоплен большой опыт, на основе которого могут быть сформулированы общие рекомендации по организации таких систем. Более того, существуют стандарты под общим названием "структурированные кабельные системы (СКС)", которые особенно актуальны для вновь создаваемых или реконструируемых относительно больших локальных сетей на уровне предприятия. Они представляют собой объемные документы, детально описывающие и регламентирующие процесс создания кабельных соединений локальных сетей.

  1. Локальные вычислительные сети FastEthernet и Gigabit Ethernet

Fast Ethernet - общее название для набора стандартов передачи данных в компьютерных сетях по технологии Ethernet со скоростью до 100 Мбит/с, в отличие от исходных 10 Мбит/с.

Fast Ethernet (IEEE 802.3u)

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet. Ее основными достоинствами являются:

  • увеличение пропускной способности сегментов сети до 100 Мб/c;
  • сохранение метода случайного доступа Ethernet;
  • сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары и оптоволоконного кабеля.

Указанные свойства позволяют осуществлять постепенный переход от сетей 10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к скоростным сетям, сохраняющим значительную преемственность с хорошо знакомой технологией: Fast Ethernet не требует коренного переобучения персонала и замены оборудования во всех узлах сети. Официальный стандарт 100Base-T (802.3u) установил три различных спецификации для физического уровня (в терминах семиуровневой модели OSI) для поддержки следующих типов кабельных систем:

100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP Category 5, или экранированной витой паре STP Type 1;

100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP Category 3, 4 или 5;

100Base-FX для многомодового оптоволоконного кабеля.

Сеть Gigabit Ethernet – это естественный, эволюционный путь развития концепции, заложенной в стандартной сети Ethernet. Безусловно, она наследует и все недостатки своих прямых предшественников, например, негарантированное время доступа к сети. Однако огромная пропускная способность приводит к тому, что загрузить сеть до тех уровней, когда этот фактор становится определяющим, довольно трудно. Зато сохранение преемственности позволяет достаточно просто соединять сегменты Ethernet,Fast Ethernet и Gigabit Ethernet в сеть, и, самое главное, переходить к новым скоростям постепенно, вводя гигабитные сегментытолько на самых напряженных участках сети. (К тому же далеко не везде такая высокая пропускная способность действительно необходима.) Если же говорить о конкурирующих гигабитных сетях, то их применение может потребовать полной замены сетевой аппаратуры, что сразу же приведет к большим затратам средств.

В сети Gigabit Ethernet сохраняется все тот же хорошо зарекомендовавший себя в предыдущих версиях метод доступа CSMA/CD, используются те же форматы пакетов (кадров) и те же их размеры. Не требуется никакого преобразования протоколов в местах соединения с сегментами Ethernet и Fast Ethernet. Единственно, что нужно, – это согласование скоростей обмена, поэтому главной областью применения Gigabit Ethernet станет в первую очередь соединение концентраторов Ethernet и Fast Ethernetмежду собой.

С появлением сверхбыстродействующих серверов и распространением наиболее совершенных персональных компьютеров класса "high-end" преимущества Gigabit Ethernet становятся все более явными. Так, 64-разрядная системная магистраль PCI, уже фактический стандарт, вполне достигает требуемой для такой сети скорости передачи данных.

Работы по созданию сети Gigabit Ethernet ведутся с 1995 года. В 1998 году принят стандарт, получивший наименование IEEE 802.3z (1000BASE-SX, 1000BASE-LX и 1000BASE-CX). Разработкой занимается специально созданный альянс (Gigabit EthernetAlliance), в который, в частности, входит такая известная компания, занимающаяся сетевой аппаратурой, как 3Com. В 1999 году принят стандарт IEEE 802.3ab (1000BASE-T).

Номенклатура сегментов сети Gigabit Ethernet в настоящее время включает в себя следующие типы:

1000BASE-SX – сегмент на мультимодовом оптоволоконном кабеле с длиной волны светового сигнала 850 нм (длиной до 500 метров). Используются лазерные передатчики.

1000BASE-LX – сегмент на мультимодовом (длиной до 500 метров) и одномодовом (длиной до 2000 метров) оптоволоконном кабеле с длиной волны светового сигнала 1300 нм. Используются лазерные передатчики.

1000BASE-CX – сегмент на экранированной витой паре (длиной до 25 метров).

1000BASE-T (стандарт IEEE 802.3ab) – сегмент на счетверенной неэкранированной витой паре категории 5 (длиной до 100 метров). Используется 5-уровневое кодирование (PAM-5), причем в полнодуплексном режиме передача ведется по каждой паре в двух направлениях.

Специально для сети Gigabit Ethernet предложен метод кодирования передаваемой информации 8В/10В, построенный по тому же принципу, что и код 4В/5В сети FDDI (кроме 1000BASE-T). Таким образом, восьми битам информации, которую нужно передать, ставится в соответствие 10 бит, передаваемых по сети. Этот код позволяет сохранить самосинхронизацию, легко обнаруживать несущую (факт передачи), но не требует удвоения полосы пропускания, как в случае манчестерского кода.

Для увеличения 512-битного интервала сети Ethernet, соответствующего минимальной длине пакета, (51,2 мкс в сети Ethernet и 5,12 мкс в сети Fast Ethernet), разработаны специальные методы. В частности, минимальная длина пакета увеличена до 512 байт(4096 бит). В противном случае временной интервал 0,512 мкс чрезмерно ограничивал бы предельную длину сети Gigabit Ethernet. Все пакеты с длиной меньше 512 байт расширяются до 512 байт. Поле расширения вставляется в пакет после поля контрольной суммы. Это требует дополнительной обработки пакетов, но зато максимально допустимый размер сети становится в 8 раз больше, чем без принятия таких мер.

Кроме того, в Gigabit Ethernet предусмотрена возможность блочного режима передачи пакетов (frame bursting). При этом абонент, получивший право передавать и имеющий для передачи несколько пакетов, может передать не один, а несколько пакетов, последовательно, причем адресованных разным абонентам-получателям. Дополнительные передаваемые пакеты могут быть только короткими, а суммарная длина всех пакетов блока не должна превышать 8192 байта. Такое решение позволяет снизить количество захватов сети и уменьшить число коллизий. При использовании блочного режима расширяется до 512 байт только первый пакет блока для того, чтобы проверить, нет ли в сети коллизий. Остальные пакеты до 512 байт могут не расширяться.

Передача в сети Gigabit Ethernet производится как в полудуплексном режиме (с сохранением метода доступа CSMA/CD), так и в более быстром полнодуплексном режиме (аналогично предшествующей сети Fast Ethernet). Ожидается, что полнодуплексный режим, не налагающий ограничений на длину сети (кроме ограничений в связи с затуханием сигнала в кабеле) и обеспечивающий отсутствие конфликтов, станет в будущем основным для Gigabit Ethernet.